Dr. © \mathfrak{E}. barmey's

Zlufgabeniammluna,

 methodifd geordnet, mehr als 8000 2lufgaben enthaltend über alle ©eile Der Elementar-2lrithmetif, vorjugssweife für $\mathfrak{G} y m m a f i e n$, Realgymmafien und $\mathfrak{D b e r r e a l}$ (dulen.In alter und neuer Kusgabe.

2llte 2lusgabe.

Sieberundzapanzigfte 2luflage.

疋

49. Wie beiben bie æurzein ber fubifden ©reidung $x^{8}-3$ ax x^{3} $+3 \mathrm{bx}-\mathrm{c}-0$, wemu biefetbe froci gleide sargeln hat, unb weldger $\mathfrak{B e b i n g u n g ~ m u ̈ f f e n ~ i n ~ b i e f e m ~ F o f l e ~ b i e ~ s o e f f i z i e n t e n ~ b e r ~}$ (bleidung gentigen?
50. 28elde Wurzefn hat bie fubifde (Mteidung $x^{3}-a x^{2}+b x$ $-\mathrm{c}-0$, wem man weiß, bā́ eine Wurgel gleid) ber ©umme ber beiben anbern ift, unt reeldjer Bebingung milfien in biefent ofalle bie Soefiigienten ber ©bleifung gentiben?

51 Wie beifen bie warzeln ber fubifden (bleidung $x^{3}-a x^{2}$ $+\mathrm{bx}-\mathrm{c}=0$, twent givei 23 urgeft resiprof finb, umb welder Bea bingurg matfien in biefem §athe bic תocfitienten ber ©́feidung gemügen?
52. WBie beifen bie 9 wurzeln ber Gleidung bes 4 ten (brabes $x^{4}+4 a x^{3}+6 b x^{2}+4 c x+d=0$, tvem bie Summe zweier Whurgetn gicidg ber ©umme ber beiben anbern ift, unb toetder $\mathfrak{B e}$ bingung mitfen in bicem §olle bie Soeffigienten ber (sfeifung gentigen?
53. Welden Bebingungen miffen bie תoeffisienten ber (Bfeid)ung beฐs 4. Grabes $x^{4}+4 \mathrm{ax}^{3}+6 \mathrm{bx}^{2}+4 \mathrm{cx}+\mathrm{d}=0$ gentitgen, wertu ztoei W_{3} urzeln bie resiprolen Werte ber beiben anbern finb, unt wie beifen in biefen falle bie warreln?

XXXVIII.

解ubifdse 65leidjumgen.

Feine fubitide bleidungen, in welden bie unbetante nur in ber britten Motens vorfommt, weldge affo von ber §orm $x^{3}-$ a finb, fubiid) © ©feidungen mit ciner ansgezeidncten WBurget, infonberbeit Folde mit enter W3urgel 3, unt bie fymmetrifden fubifiden (bleidungen von ber ₹orm $a x^{3}+b x^{2}+b x+a=0$ find fajon oben im 25 . $2 \mathscr{L} b=$ [dinitt bebanbelt worben. Die Ruftbjung biefer Rrten bon fufiidjen ©feidungen erforberte feine befonberen §ilfsmittel.

Q(ud) bie fubilden © 5 teiduugen mit einer rationalen Wurget
 (6icidutugen Gaben toenigftens eine rationale wurzel. ©゙5 follen alle 2 Bugefn betjetben angegeben werben.

1) $x^{3}-4 x^{2}+x+6=0$
2) $x^{3}-6 x^{2}+11 x-6=0$
3) $x^{3}+8 x^{2}+5 x-50=0$
4) $x^{3}+2 x^{2}-23 x+6=0$
5) $x^{3}-4 x^{2}-15 x-42=0$
6) $x^{3}-4 x^{y}+x-4=0$
7) $x^{3}-5 x^{2}+8 x-6=0$
8) $x^{3}-\frac{3}{4} x^{8}-\frac{5}{9} x+\frac{5}{6}=0$
9) $x^{5}-2 \frac{5}{6} x^{2}+2 \frac{1}{4} x-1=0$
10) $6 x^{3}-29 x^{2}=45-53 x$
11) $70+71 x=47 x^{2}-6 x^{3}$
 Frten unt bat fie teine rationale W3urgel, fo finb anbere Betradfungen zur $\mathfrak{G u f b j u m g ~ n b i g . ~ M a n t ~ g e f i t ~ i n ~ b i e f e m ~ g a l l e ~ i m m e r ~ b o n ~ b e r ~ r e b u s ~}$
 bie rebuzierte form nidit, io muf man berielben erft biefe form geben. §at bas erfte (sfieb einen Soeffizienten, fo bivibiert man bie (bleidung burd benfetben. Db bie 8oeffizienten fonit ganze Saften ober 8 Brūde finb,

$$
x^{3}=p x+q
$$

gefradit ift, too p und q beliebige reelle Baffen fitb, ganje ober geo brodete, politive ober negative.

A. Garbanifde £ōfung.

§it bie tubifide (3feidumg

$$
\begin{equation*}
x^{5}=p x+q \tag{1}
\end{equation*}
$$

gegeben, fo ift bic Carbanifide Qofimg

$$
\begin{equation*}
x=\sqrt[3]{\frac{q+r}{2}}+\sqrt[3]{\frac{q-r}{2}} \text { für } r=\sqrt{q^{2}-\frac{4}{97} p^{9}} \tag{2}
\end{equation*}
$$

um auf biefent Bege affe brei Wurzeft ber gegebenten (bleidung ou finben, bat man, weun bie reeflen Berte ber §ubifourgeln

$$
\begin{equation*}
\sqrt[8]{\frac{q+r}{2}}=u \quad \sqrt[3]{\frac{q-r}{2}}=v \tag{3}
\end{equation*}
$$

geefest werben,
(4) $\mathrm{x}_{1}=\mathrm{u}+\mathrm{v}$,

$$
\begin{aligned}
& x_{2}=-\frac{u+v}{2}+\frac{u-v}{2} \sqrt{-3} \\
& x_{3}=-\frac{u+v}{2}-\frac{u-v}{2} \sqrt{-3}
\end{aligned}
$$

 ber ctyleidung (1) utegativ ift, alip in ber bleidung $x^{3}+p x \pm q=0$,

 toenn Die Bleidung etne foldje bat, nur felten in rationaler Form liefert. Damit btes geidicht, מuts nad) ben Ermittelungen ven (e. Qtebredt bie fubitide
 rationale ©rofen fein formen. Whe ©arbantife Bormel liefert ban $\mathrm{x}=\mathrm{m}+\mathrm{m}$.
anter greidy fitib. Cine ber greiben Murzefn mus bann bent abjotuten Berte nach balb jo groj fein als bie ungfeide, aber bas entgegens gefegte Beifien baben. - git r^{2} negativ, alfo r felfft imaginär, io
 närer Form, obmogl gerabe in biefent falle alle brei $\$ 3$ argeftr reell finb. Diefen fall nemt man ben irrebusiblen foll, weif man bis jejt tein Mittel gefuben bat, afgebraifíh bie imaginäre §orm auf eine reefle zu rebusieren.

Die folgenten Chleidungen haben wenigitent eine rationale Wirrzel

 (Garbanifden Söfutg aufgefudt werben.

1) $x^{3}=3 x+2$
2) $x^{8}=36 x+91$
3) $x^{11}-9 x-28$
4) $x^{3}+9 x+26=0$
5) $x^{3}-18 x=35$
6) $x^{3}-72 x-280=0$

Die folgenben (3leid)ungen Gaben eine reelle rationale ober irtas

 unb seubitivurgetn orbentifí beredfut tverben, ba man fiid oft lange bex geblidy abmuityen fam, bie irrationale gorm auf eine rationale zu bringen.
7) $\mathrm{x}^{3}-2 \mathrm{x}+8$
8) $x^{3}=x-7$
9) $x^{3}+5 x-4=0$
10) $x^{3}-4 x+15$
11) $x^{8}+7 x-8=0$
12) $\mathrm{x}^{8}=26 \mathrm{x}+60$

Die folgenben (blecidutgen faben ebenfafis cine reelle rationafe ober irrationale ${ }_{2}$ Burgel, milifen aber erft mebr ober weniger umgeformt werben, um bie (Earbanifde Sbjung auf fie amvenben zu tömen.

$$
\begin{aligned}
& \text { 13) } 4 \mathrm{x}^{3}-5 \mathrm{x}-6=0 \quad \text { 14) } 7 \mathrm{x}^{3}+3 \mathrm{x}-100=0 \\
& \text { 15) } 15 \mathrm{x}^{3}+13 \mathrm{x}^{4}-2=0 \\
& \text { 16) } 111 \mathrm{x}^{3}-5 \mathrm{x}^{2}+4 \\
& \text { 17) } \mathrm{x}^{3}-3 \mathrm{x}^{2}+4 \mathrm{x}-4=0 \\
& \text { 18) } 5 \mathrm{x}^{3}+10 \mathrm{x}^{1}+7 \mathrm{x}-2=0 \\
& \text { 19) } 3 \mathrm{x}^{3}+13 \mathrm{x}^{2}+11 \mathrm{x}-14=0 \\
& \text { 20) } 28 \mathrm{x}^{3}-126 \mathrm{x}^{2}+195 \mathrm{x}-139=0
\end{aligned}
$$

B. Die trigonoureriifde aōfung.

Die trigonometrifdie \mathbb{Q} bjung tritt ein im irreduiblen Fafl, wem atfo $q^{2}-\frac{4}{17} p^{3}$ regatio ift. Sit bie fubifde (gleidgung

$$
\begin{equation*}
x^{3}-p x+q \tag{1}
\end{equation*}
$$

gegeben, io beftinumt man ben $\mathfrak{F s i n f e l} \varphi$ aus

$$
\begin{equation*}
\sin 3 \varphi-\frac{3 q}{p \sqrt{\frac{4}{3} p}} \tag{2}
\end{equation*}
$$

waš in biefem gralfe inmer mögliaf) ift, ba $q^{1}-\frac{4}{i 7} p^{3}<0$, mithin $\frac{3 \mathrm{q}}{\mathrm{V}^{4} \mathrm{p}}<1$ ift. Wit φ gefunben, fo finb bie brei 28 urgein ber gev p ${ }^{\frac{4}{3}} \mathrm{p}$

$$
\begin{gather*}
x_{1}=-\sqrt{{ }_{1}^{4}} p \cdot \sin \varphi, \quad x_{2}=-\sqrt{\frac{4}{3} p} \cdot \sin (60-\varphi), \tag{3}\\
x_{3}=+\sqrt{\frac{4}{3} p} \cdot \sin (60+\varphi)
\end{gather*}
$$

Four bie あfeidumg $x^{3}-p x-q$ ergaften bie brei wurgeln bie entgegengepegten Seidfen. - Qus ber Qō̄ung ift su erieben, baś bie

 rationale, teils irrationale. Die $\$$ Burjelt folfen nad) ber trigonos metrifden $\mathfrak{B o f u n g ~ a u f g e f u d) t ~ w e r b e n . ~ I f t ~ b i e ~ (b l e i d u n g ~ n i d f t ~ i n ~ b e r ~}$ rebuzierten 耳orm gegeben, โo muß fie ejit auf biefe §orm gebradt merben,

1) $x^{3}-7 x-6=0$
2) $x^{3}=12 x+14$
3) $x^{3}-19 x+30=0$
4) $x^{0}=7 x-5$
5) $4 x^{3}-18 x+6=0$
6) $30 x^{3}-61 x^{2}+36=0$
7) $8 x^{3}+12 x^{2}-4 x-1=0$
8) $2 x^{3}-5 x^{2}-13 x+30=0$
9) $27 x^{3}-54 x^{2}+25 x+1=0$

 25. 2bfanitt leidyt in bie Tugen fält, su tbien, wirb mant erft unterfuden,
 S(f)wierigfeiten madgt. Wat fie feine rationafe Burzel, io mus man fie

 mäfig, nad) S. 301,23 erit bic ©frengen feftruftellen, bwifden welden bie reetle शzurge! fiegt. §at bie ©bleidung $x^{3}+a x^{2}+b x+c=0$
 Faftor bon c , fo fant bie 2 Burel, welde ztoifden m unb in fiegt, nur irrational fein. Durd) (Einiegen von $+\infty, 10,1,0,-1,-10,-\infty$ filr \mathbf{x}, ertemt man aud feidgt, ob bie ©bleid)ung nur eine reelle Burjel hat, ober brei.

1. $x^{3}=37 x+84$
2. $x^{3}=45 x-152$
3. $x^{3}+41 x=1000$
4. $x^{n}-61 x+180=0$
5. $x^{3}-30 x-20$
6. $x^{3}=90 x+341$
