Näherungsmethoden

Keplersche Regel:
$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{6} (y_0 + 4y_1 + y_2)$$
 mit $y_0 = f(a)$ $y_1 = f(\frac{a+b}{2})$ $y_2 = f(b)$

Sie liefert bis zu Polynomen 3. Grades exakte Werte.

Simpson-Regel: Man zerlegt das Integrationsintervall in n Streifen der Breite $h = \frac{b-a}{n}$ und

n sei eine gerade Zahl

Befehl in MuPAD

Die n Stützwerte sind $y_0=f(x_0)=f(a)$ $y_1=f(a+h)$ $y_2=f(a+2h)$,...

Dann gilt
$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 4y_{n-1} + y_n)$$

$$= 0..1$$

$$0.5048545941$$

Rotationsvolumen, das entsteht, wenn sich der Graph von *f* in den Grenzen von a bis b, bzw. von c bis d, um die Achse dreht.

Bei Drehung um die x-Achse
$$V=\pi \int_{a}^{b} y^2 dx = \pi \int_{a}^{b} f^2(x) dx$$
.

Bei Drehung um die y-Achse
$$V = \pi \int_{y=c}^{y=d} x^2 dy = \pi \int_{c}^{d} g^2(y) dy$$
 mit $x = g(y)$.

Mantelfläche eines solchen Rotationskörpers

Drehung um x-Achse
$$Mantel = 2\pi \int_a^b y \cdot \sqrt{1 + (y')^2} dx = 2\pi \int_a^b f(x) \cdot \sqrt{1 + (f'(x))^2} dx$$
.

Drehung um y-Achse
$$Mantel = 2\pi \int_{y=c}^{y=d} x \cdot \sqrt{1 + (x')^2} \ dy = 2\pi \int_{c}^{d} g(y) \cdot \sqrt{1 + (g'(y))^2} \ dy$$
.

Bogenlänge des Graphen von f zwischen x=a und x=b.

Kurvenlänge =
$$\int_{a}^{b} \sqrt{1 + (y')^2} dx = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$

Mittelwert aller Funktionswerte

linearer Mittelwert
$$\overline{y} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
, quadratischer Mittelwert $\overline{y}_{q} = \sqrt{\frac{1}{b-a} \int_{a}^{b} f^{2}(x) dx}$