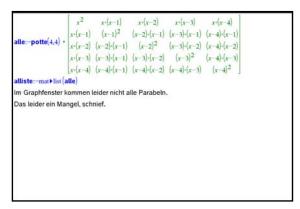

Prof. Dr. dörte Haftendorn 2011

Probleme 1

isten	
$i:=seq(i^2,i,1,10) \cdot \{1,4,9,16,25,36,49,64,81,100\}$	i heißt Laufvariable.
Anstelle von i ² kann jeder Term von i stehen.	
Die Elemente von li erreicht man so: li 6 + 36	
eft(ti,3) • {1,4,9} sind links die ersten drei E	lemente.
$ight(li,3) \cdot \{64,81,100\}$ sind rechts die letzten	drei Elemente
nid(li,4) • {16,25,36,49,64,81,100 } sind die el	emente ab Nr. 4.
nid(li,4,5) • {16,25,36,49,64} sind ab dem 4.	Element 5 Elemente.
eer:-{[]} ist die leere Liste. Man braucht sie	beim Programmieren.
$\operatorname{ang:=seq}(\operatorname{li}[i],i,1,10,2) \cdot \{1,9,25,49,81\} \text{ nimmt}$ Plätzen, entsprechend $\operatorname{ger:=seq}(\operatorname{li}[i],i,2,10,2) \cdot$	
ugment (ung.ger) • {1,9,25,49,81,4,16,36,64,10	} fügt zwei Listen aneinander,
na:-{ung,ger} • 1 9 25 49 81 Listen	von Listen sind Matrizen

1.1



1.3

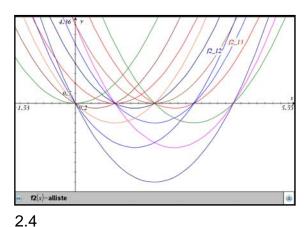
Probleme 2

Nutzung von einmal überlegten Vorgehensweisen:				
In eine TI-Nspire-Datei kann man sich mehrere "Probleme" eröffnen.				
(Mit Einfügen Problem). Diese Probleme sind untereinander Variablen-geschützt.				
Daher ist folgenden sinnvoll:				
Mache eine neues Problem auf. Kopieren eine wichtige Seite, hier die mit der Definition von "potte", der Doppelliste. Gehe dazu in den Seitensortierer				
(Strg Nord am Handheld, am PC links 2. Eintrag in der Werkzeugpalette)				
Markiere die Seite (mit sh auch mehrere) aus Problem 1 mit Strg C und gehe im Seitensortierer in Problem 2 und füge mit Strg V die Seite dort ein.				
Im Folgendenist dann anstelle von i^k der Parabelterm $(x-i)\cdot (x-k)$ eingeben.				
Dan sind die "Laufbereiche" angepasst (Start 0 beide Male).				
Dann muss "Syntax überprüfen und speichern" erfolgen.				
In einem Notesfenster erscheit mit dem Aufruf jedem potte(m,n) eine Tabelle mit allen Parabeltermen, die die Nullstellen ganzzahlig zw. m und n (incl.) haben.				

2.1

2.3

Solche Zeilen wie d		densoll man	nicht einzel	n eingebenmüssen.
(3:20) 102				
	7,64,125,216,343,	512 729 1000	1	
			711	
$seq(i^4, i, 2, 10) \cdot \{16,$	81,256,625,1296,2	2401,4096,65	61,10000 }	
poti:=seq(seq(ik,i,2,	8 4.1.10			
2 3	4 5	6	7	8
4 9	16 25	36	49	64
8 27	64 125	216	343	512
16 81	256 625	1296	2401	4096
. 32 243	1024 3125	7776	16807	32768
64 729	4096 15625	46656	117649	262144
128 2187	16384 78125	279936	823543	2097152
256 6561	65536 390625	1679616	5764801	16777216
512 19683 2	62144 1953125	10077696	40353607	134217728
1024 59049 10	048576 9765625	60466176	282475249	1073741824


1.2

Hinweise zur Seitenteilung und zur Programmierung Zumindest am PC ist es sinnvoll, die Seite für eine Programmierung zu teilen, dann kann man nämlich gleich ausprobieren ob das Programm oder die Funktion richtig läuft. Vorgehen PC: Button Einfügen, währen das nun sich öffnende Fenster wartet, Button Seitenlayout und das Passende wählen. Man wird für beide Hälften aufgefordert, eine Applikation zu wählen. Links nimmt man wieder den Button einfügen und weit unten Programmeditor neu. In dem nun erscheinenden Fenster gibt man der geplanten Funktion (oder dem Programm) einen Namen (ohne irgendwelche Klammern), wählt im nächtsen Feld "Funktion" aus (Bibzugriff soll hier nicht sein) und erhält die Definitionssyntax für eine Funktion. Hinter dem Funktions- oder Programmamenträgt man in die Klammern ein, welche Variablen man beim Aufruf übergebenwill, hier potte(m,n), also m und n, die Zeilen- und die Spattenzahl, Als erste Zeile (unter Func) schreibt man Local und dann die Variablen, die man innerhalb des Programms zu verwenden gedenkt. Die Ausgabe oder Rückgabe der Funktion ist entweder der zusetzt berechnete Wert oder der Wert der Variablen, die hinter den Wort Return steht. Programme können auch eine text-Ausgabe enthalen, sie laufen aber nur im Calculator. Funktionen laufen auch eine text-Ausgabe enthalen, sie laufen aber nur im Calculator. Funktionen laufen auch eine text-Ausgabe enthalen, sie laufen aber nur im Calculator. Funktionen laufen auch eine text-Ausgabe enthalen, sie laufen aber nur

1.4

potte	2/2 potte(6,3)
Define $potte(m,n)$ — Func Local i,k $seq[seq((x-i)\cdot(x-k),i,0,m]$ EndFunc	$\begin{bmatrix} x^2 & x \cdot (x-1) & x \cdot (x-2) & x \cdot (x-3) \\ x \cdot (x-1) & (x-1)^2 & (x-2) \cdot (x-1) & (x-3) \cdot (x-1) \end{bmatrix}$

2.2

doppelliste.tns 1 von: 1