Algebra, Theorie endlicher Gruppen (G,\cdot) , Einselement sei als 1 notiert. Das Folgende gilt für alle endlichen Gruppen:

(1) Satz: $\forall a \in G \ \exists \ k \in \mathbb{N}: \ a^k = 1$ Für jedes Element a gibt einen Exponenten k, so dass die Potenz 1 ist.

Beweis: $\exists \overline{a} : a\overline{a} = 1$. Sei $a^i = a^j$ mit i < j. Dann folgt $1 = a^i \overline{a}^i = a^j \overline{a}^i = a^{j-i} = a^k$. q.e.d

- (2) Def.: Sei $a \in G$. Die kleinste natürliche Zahl (>0) mit $a^k = 1$ heißt Ordnung von a, kurz ord(a).
- (3) Satz und Def.: $\langle a \rangle := \{1, a, a^2, \dots, a^{ord(a)-1}\}$ ist eine Gruppe.

 $\langle a \rangle$ heißt "von a erzeugte Untergruppe".

Beweis: Abgeschlossenheit: $a^ia^j=a^{i+j}=a^{ord(a)+r}=a^{ord(a)}a^r=a^r$, notiert für $i+j\geq ord(a)$, da sonst klar.

Inverses zu a^i ist $a^{ord(a)-i}$, denn $a^i a^{ord(a)-i} = a^{ord(a)} = 1$. q.e.d.

- (4) Def.: Die Ordnung einer Gruppe ist die Anzahl ihrer Elemente, also ord(G) = |G|, damit auch $ord(\langle a \rangle) = ord(a)$.
- (5) Def.: Sei $g \in G$. Die Menge $g\langle a \rangle := \{g, g \, a, g \, a^2, \dots, g \, a^{ord(a)-1}\}$ heißt Nebenklasse von a.
- (6) Satz: a) Jede Nebenklasse $g\langle a\rangle$ hat genau ord(a) Elemente.
 - b) Zwei Nebenklassen sind entweder gleich oder disjunkt. Beweis a) Mehr Elemente können es ja nicht sein, aber evt. weniger. Sei Sei \overline{g} g=1 und g $a^i=g$ a^j , dann folgt \overline{g} g $a^i=\overline{g}$ g a^j also $a^i=a^j$. Letzteres ist in $\langle a \rangle$ für $i \neq j$ nicht möglich, also sind es auch ord(a) Elemente.
 - b) Sei $g \, a^i = h \, a^j \,$ mit i < j ein Element aus beiden Nebenklassen. Dann folgt $g = h \, a^{j-i} \in h \, \langle a \rangle$ also auch $\forall r \, g \, a^r \in h \, \langle a \rangle$ und damit $g \, \langle a \rangle \subseteq h \, \langle a \rangle$. Weiter folgt $g \, a^i a^{ord \, (a)-j} = h \, a^j a^{ord \, (a)-j} = h$, damit wie oben

 $h\langle a\rangle\subseteq g\langle a\rangle$, also $g\langle a\rangle=h\langle a\rangle$. Ein gemeinsames Element erzwingt also schon, dass die Nebenklassen gleich sind. Kein gemeinsames Element heißt "disjunkt" q.e.d

- (7) Hauptsatz zur Ordnung von Gruppen und Elementen
 - a. ord(a)|ord(G), jede Elementordnung teilt die Gruppenordnung
 - b. $\forall a: \ a^{ord(G)} = 1$, ein Element hoch Gruppenordnung ist immer 1.
 - c. $e = q \cdot ord + r$, dann gilt $a^e = a^r$. Dabei kann man als ord die Elementordnung oder die Gruppenordnung nehmen.

Beweis: a) Die Vereinigung aller Nebenklassen –es gebe z Stück- ist die ganze Gruppe und alle Nebenkassen haben gleich viele Elemente, nämlich ord(a). Dann ist

$$z \cdot ord(a) = ord(G)$$
. b) $a^{ord(G)} = a^{z \cdot ord(a)} = \left(a^{ord(a)}\right)^z = 1^z = 1 = 1$ c) klar. qed