Dandelinsche Kugeln im Zylinder, Ellipsensalami

Prof. Dr. Dörte Haftendorn Nov. 06, http://haftendorn.uni-lueneburg.de

r:=5: d:=8:e:=sqrt(d^2-r^2):

zyl:=plot::Surface([r*cos(t),r*sin(t),z],t=0..2*PI,z=-d-r..d+r

    ,Color=[1,0,0,0.25],FillColorType=Flat, Mesh=[50,50]):

eb:=plot::Implicit3d(-e*x+r*z=0, x=-r..r,y=-r..r,z=-d-r..d+r):

ko:=plot::Sphere(r,[0,0,d]):ku:=plot::Sphere(r,[0,0,-d]):

nv:=plot::Arrow3d([-e,0,r]):

line:=plot::Line3d([r*cos(t),r*sin(t),d],

        [r*cos(t),r*sin(t),-d],

        LineWidth=0.8,LineColor=[0,1,0],t=0..2*PI):

delete r,d:

solve({u^2+v^2=d^2-r^2, u^2+(d-v)^2=r^2},{u,v});

math

 

uf := 1/d*r*((d - r)*(d + r))^(1/2):

vf := 1/d*(d^2 - r^2):

 

r:=5: d:=8:

F1g:=plot::Point3d([uf,0,vf], PointSize=40,

PointColor=RGB::Black):

F2g:=plot::Point3d([-uf,0,-vf], PointSize=40,

PointColor=RGB::Black):

Wo schneidet die grüne Gerade die Ebene?

zz:=e/r*cos(t):

lineM1:=plot::Line3d([r*cos(t),r*sin(t),d],

        [r*cos(t),r*sin(t),e*cos(t)],

        LineWidth=0.8,LineColor=[0,1,0],t=0..2*PI):

 

lineM2:=plot::Line3d([r*cos(t),r*sin(t),-d],

        [r*cos(t),r*sin(t),e*cos(t)],

        LineWidth=0.8,LineColor=[0,1,1],t=0..2*PI):

 

lineF1:=plot::Line3d([uf,0,vf],

        [r*cos(t),r*sin(t),e*cos(t)],

        LineWidth=0.8,LineColor=[0,1,0],t=0..2*PI):

lineF2:=plot::Line3d([-uf,0,-vf],

        [r*cos(t),r*sin(t),e*cos(t)],

        LineWidth=0.8,LineColor=[0,1,1],t=0..2*PI):

kro:=plot::Circle3d(r,[0,0,d],[0,0,1]):

kru:=plot::Circle3d(r,[0,0,-d],[0,0,1]):

kotr:=plot::Sphere(r,[0,0,d],FillColor=[1,0.5,0,0.85]):

kutr:=plot::Sphere(r,[0,0,-d],Color=[1,0.5,0,0.85]):

zylleer:=plot::Surface([r*cos(t),r*sin(t),z],t=0..2*PI,z=-d-r..d+r

    ,Color=[1,0,0,0.25],FillColorType=Flat, Mesh=[30,30],

             ULinesVisible=FALSE,VLinesVisible=FALSE):

plot(eb,nv,lineM1,lineM2,lineF1,lineF2,F1g,F2g, kro,kru,kutr,

                kotr,Axes=Origin,zylleer,

                 Scaling=Constrained);

MuPAD graphics

.