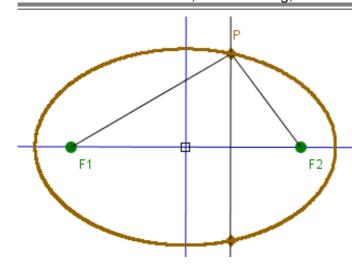
Kurven

Ellipse - Fadenkonstruktion

-8- **<**

Prof. Dr. Dörte Haftendorn, Uni Lüneburg, 6. November 2002



P ist der geometrische Ort aller Punkte, die von zwei festen Punkten eine konstante Abstandssumme haben.

Behauptung:

Die Ortskurve ist eine Ellipse

Beweis:

Bekannt sei: Die Mittelpunktsgleichung

einer Ellipse ist
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 mit der

großen Halbachse a und der kleiner Halbachse b. Diese Gleichung ist herzuleiten. Legt man p auf die x-Achse, so sieht man $Faden=2\,a$.

Dann gilt also nach Konstruktion $L_1 + L_2 = 2a$ $\langle 1 \rangle$.

Pythagoras liefert
$$L_1^2 = y^2 + (x+e)^2$$
 $\langle 2 \rangle$ mit $e = \overline{OF}_2$.

Ebenso
$$L_2^2 = y^2 + (x-e)^2 \quad \langle 3 \rangle$$

Subtraktion
$$L_1^2 - L_2^2 = 4xe$$
 $\langle 4 \rangle = \langle 2 \rangle - \langle 3 \rangle$

3. Binom.F.
$$(L_1 - L_2)(L_1 + L_2) = 4xe$$
 $\langle 4 \rangle$

Division und
$$\langle 1 \rangle \Rightarrow (L_1 - L_2) = \frac{2xe}{a} \langle 5 \rangle$$

Addition zu
$$\langle 1 \rangle \Rightarrow 2L_1 = 2a + \frac{2xe}{a} \langle 6 \rangle$$

Quadriert
$$\frac{\langle 6 \rangle^2}{4} \Rightarrow L_1^2 = a^2 + 2xe + \frac{x^2 e^2}{a^2} \quad \langle 6' \rangle$$

$$\ln \langle 2 \rangle \Rightarrow a^2 + 2xe + \frac{x^2 e^2}{a^2} = y^2 + (x+e)^2 \langle 7 \rangle$$

Sortieren
$$x^2(1-\frac{e^2}{a^2}) + y^2 = a^2 - e^2 \langle 7' \rangle$$

Mit
$$b^2 := a^2 - e^2 \langle 8 \rangle$$
 folgt $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \langle 7" \rangle$

Gleichung $\langle 8 \rangle$ ist auch unmittelbar einsichtig.

q.e.d.

Also ergibt sich aus der Gärtnerkonstruktion die Ellipsengleichung, damit ist die Bezeichnung "Gärtnerellipse" oder "Fadenkonstruktion der Ellipse" gerechtfertigt.