Erzeugung stochastischer Vektoren und Matrizen

Prof. Dr. Dieter Riebesehl+Dörte Haftendorn, Leuphana Universität Lüneburg, Sept. 2011 www.mathematik-verstehen.de

Spielwiese mit den hier bereitgestellten Möglichkeiten:

$$myv:=stochvecto(3) \cdot [0.617002 \quad 0.185868 \quad 0.19713] \quad round(myv,2) \cdot [0.62 \quad 0.19 \quad 0.2]$$

So kann man stochastische Vektoren erzeugen.

$$\mathbf{mym}:=\mathbf{stochmatrix}(3) \succ \begin{bmatrix} 0.106652 & 0.042972 & 0.850376 \\ 0.529917 & 0.296396 & 0.173687 \\ 0.911463 & 0.005741 & 0.082796 \end{bmatrix} \quad \mathbf{round}(\mathbf{mym},2) \succ \begin{bmatrix} 0.11 & 0.04 & 0.85 \\ 0.53 & 0.3 & 0.17 \\ 0.91 & 0.01 & 0.08 \end{bmatrix}$$

eine stochastische Matrix mit Zeilensummen 1

myv·mym ► [0.343976 0.082736 0.573288] eine Zustandsvektor-Änderung

stabil:=**mym**⁵⁰
$$\rightarrow \begin{bmatrix} 0.497789 & 0.03422 & 0.467992 \\ 0.497783 & 0.03422 & 0.467997 \\ 0.49778 & 0.03422 & 0.468 \end{bmatrix}$$
 Die stabile Übergangsmatrix

eig:=stabil[1] > $[0.497789 \quad 0.03422 \quad 0.467992]$ der Eihgenvektor

eig·mym ► $\begin{bmatrix} 0.497781 & 0.03422 & 0.467999 \end{bmatrix}$ Beweis, dass er Eigenvektor ist.

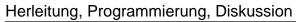
Dieses kann man verwenden um (viele) Beispiele zu erfinden.

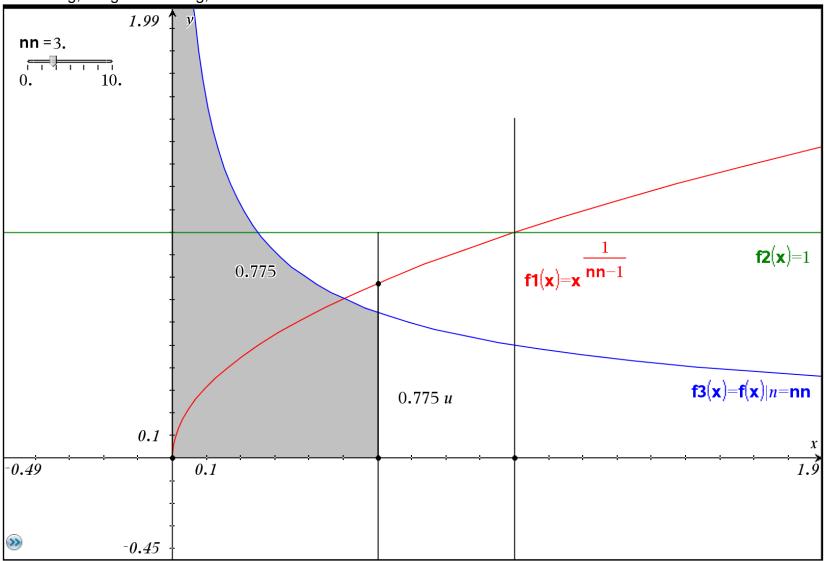
Erzeugung stochastischer Vektoren und Matrizen Herleitung Zum Ansatz siehe Seite 12

Prof. Dr. Dieter Riebesehl+Dörte Haftendorn, Leuphana Universität Lüneburg, Sept. 2011

Gesucht ist eine Dichtefunktion für eine Zufallsgröße z auf dem Intervall [0,1], die z aus

Symmetriegründen den Erwartungswert 1/n gibt. Ansatz: $phi(z):=s\cdot z^k + Fertig$ Es muss gelten


$$\int \mathbf{phi}(z) \, dz + \frac{z^{k+1} \cdot s}{k+1} \qquad \frac{z^{k+1} \cdot s}{k+1} | z=1 + \frac{s}{k+1}$$
 muss 1 sein, alsi s:=k+1 Nun also


$$\frac{(k+1)\cdot z^{k+2}}{k+2}|z=1 + \frac{k+1}{k+2} \quad \text{solve} \left(\frac{k+1}{k+2} = \frac{1}{n}, k\right) + k = \frac{-(n-2)}{n-1} + \frac{-(n-2)}{n-1} + 1 + \frac{1}{n-1}$$
 Dichte einer Zufallsgröße mit

Erwartungswert 1/n
$$\mathbf{f}(z) := \frac{1}{n-1} \cdot z^{\frac{2-n}{n-1}} \rightarrow Fertig \text{ in [0,1] Dichte-Bedingung } \int_{0}^{1} \mathbf{f}(z) \, dz | n > 1 \rightarrow 1$$
,

Erwartungswert
$$E(x) = \int_{0}^{1} (z \cdot \mathbf{f}(z)) d\mathbf{x} | n > 1 + \frac{z^{\frac{1}{n-1}}}{n-1}$$
 Von dieser Dichtefunktion ist die kumulierte

Verteilungsfunktion:
$$\int \mathbf{f}(z) dz \cdot z^{\frac{1}{n-1}}$$
 mit der Bedeutung: $P(0 < r < z) = z^{\frac{1}{n-1}} = r^{n-1}\sqrt{z}$ für n>1


```
Define LibPub stochvector(n)=Func
                                                                            • Fertig
                               Local x
                               If n=1 Then
                               Return 1
                               Else
                              \mathbf{x} := (\text{rand}())^{n-1}
                                Return augment ([1-x],x\cdot stochvecto(n-1))
                               EndIf
                               EndFunc
Anmerkung: Es hätte auch erste Komponentex und Fakor in der zweiten (1-x) sein können.
stochvector(1) \cdot [1]
stochvector(2) ► [0.056403 0.943597]
stochvector(3) ► [0.046942 0.813256 0.139802]
stochvector(4) • [0.198595 0.290884 0.135894 0.374626]
Der Vektor wird in diesem Konzept rekursiv erzeugt und die Komponentenhaben eine Verteilung mit
dem mit dem Erwartungwert \frac{1}{}.
Veranschaulichungfür n=3 in einem Dreieck, das dann gleichverteilte Punkte haben muss, siehe unten.
```

1.4

StochastischeMatrizen-ti.tns 4 von: 12

```
Nun ist eine einfache stochastische Matrix auch kein Problem mehr:
Define LibPub stochmatrix (n)=Func
                                                                                       ▶ Fertig
                                         Local l,i
                                         l:=stochvector(n)
                                         For i,1,n-1
                                          l:=\operatorname{colAugment}(l,\operatorname{stochvector}(n))
                                         EndFor
                                         Return 1
                                         EndFunc
Ein paar Tests:
stochmatrix(2) \triangleright \begin{bmatrix} 0.956008 & 0.043992 \\ 0.660637 & 0.339363 \end{bmatrix}
round(stochmatrix(3),2) •
                                   0.53 0.3 0.17
                                   0.702 0.007 0.195 0.095 0.001

    0.139
    0.044
    0.009
    0.583
    0.225

    0.276
    0.365
    0.277
    0.023
    0.059

round (stochmatrix(5),3) \rightarrow
                                    0.665 0.084 0.112 0.004 0.135
                                    0.588 0.024 0.083 0.243 0.063
```

1.5

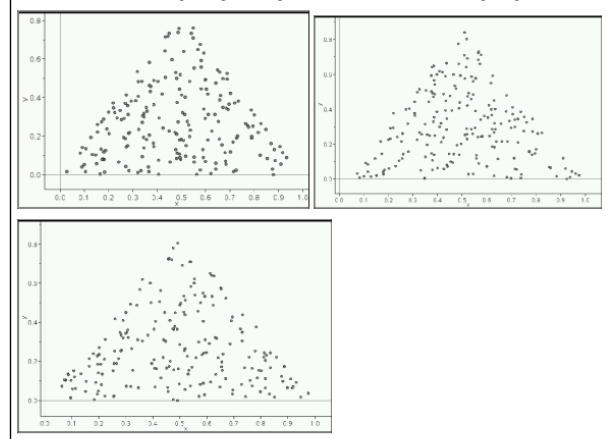
StochastischeMatrizen-ti.tns

5 von: 12

Herleitung, Programmierung, Diskussion

Zum Nachweis, dass die stochastischen Vektoren wirklich gleichverteilt sind, werden 200 3-Vektoren so aufbereitet, dass man sieht, dass sie im Dreieck x+y+z=1, $x\geq 0$, $y\geq 0$, $z\geq 0$ wirklich gleichverteilt sind.

Zunächst eine Funktion, die von den Vektoren die ersten beiden Komponentennimmt, als Punkte deutet und auf ein gleichseitiges Dreieck projiziert.


Define **stochpts**()=Func
Local
$$l$$
,**i**

$$l:=\operatorname{subMat}\left(\operatorname{\textbf{stochvector}}(3),1,1,1,2\right)\cdot\begin{bmatrix}1&0\\\frac{1}{2}&\frac{1}{2}\cdot\sqrt{3}\end{bmatrix}$$
For i ,1,199
$$l:=\operatorname{colAugment}\left(l,\operatorname{subMat}\left(\operatorname{\textbf{stochvector}}(3),1,1,1,2\right)\cdot\begin{bmatrix}1&0\\\frac{1}{2}&\frac{1}{2}\cdot\sqrt{3}\end{bmatrix}\right)$$
EndFor
Return l
EndFunc

Dann wird b mit einer Matrix von Punkten gefüllt, Komponentender Punkte untereinander:

 $\mathbf{b} := (\mathbf{stochpts})^{\mathsf{T}}$ (bitte nicht ausführen, das sprengt den Bildschirm! Ansehen im Calculator-Fenster.

In Lists und Spreadsheats (siehe dort) werden mit den Werten aus b Spalten gefüllt, und in Data und Statistics die Punkte gezeigt: (einige Bilder davon ist hier eingefügt).

So sollte es sein!

1.7

StochastischeMatrizen-ti.tns 7 von: 12

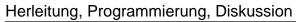
```
Weitere Prüfungen:
Herausgreifen von 200 k-ten Komponenten:
Define komp(k)=Func
                                                             • Fertig
                  Local l.i
                  1:={[]}
                  For i,1,200
                   l:=\operatorname{augment}(l,\{\operatorname{stochvector}(3)[1 \ k]\})
                  EndFor
                  Return 1
                  EndFunc
seq(mean(komp(k)),k,1,3) \rightarrow \{0.331224,0.335412,0.309414\} an allen Komponentenist der
seq(mean(komp(k)),k,1,3) \cdot \{0.304561,0.332572,0.349752\}
                                                                    Mittelwert etwa 1/3
seq(mean(komp(k)),k,1,3) \cdot \{0.349114,0.32206,0.339901\}
seq(stDevPop(komp(k)),k,1,3) + \{0.237784,0.235711,0.240808\} Deutung aber nicht wie bei
2 \cdot \text{seq}(\text{stDevPop}(k \circ p(k)), k, 1, 3) \rightarrow \{0.472633, 0.446255, 0.466578\} normalverteilten Zufallsgrößen.
seq(max(komp(k)),k,1,3) + \{0.916204,0.97023,0.960071\} Der Wertebereich wird gut ausgeschöpft.
seq(min(komp(k)),k,1,3) \rightarrow \{0.001068,0.009207,0.001348\}
seq(median(komp(k)),k,1,3) + \{0.297608,0.299841,0.317993\} Median scheint kleiner als Mittelwert.
```

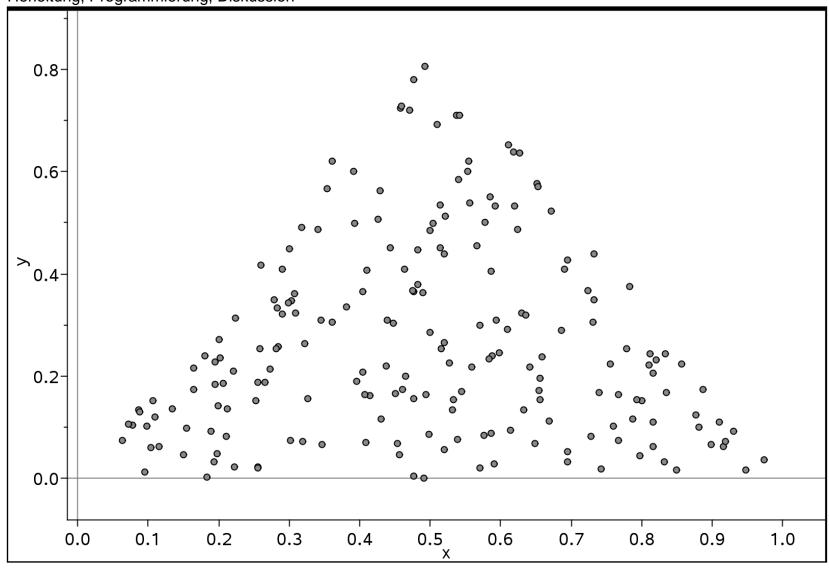
StochastischeMatrizen-ti.tns 8 von: 12

Herleitung, Programmierung, Diskussion

r romana, r	rogrammor	arig, Diskus	51011						
b = stochpts	())+								
0.636423	0.356749	0.393331	0.427929	0.565014	0.471186	0.582418	0.476935	0.255357	0.7
0.27279	0.077842	0.588516	0.188373	0.152927	0.513376	0.338408	0.699873	0.065131	0.3
$b := (stochpts())^{T}$									
0.85805	0.446088	0.361183	0.623918	0.800651	0.744756	0.901876	0.535322	0.498985	0.6
0.207542	0.507953	0.048732	0.193911	0.283601	0.34695	0.075972	0.791256	0.802085	0.2
$b := (stochpts())^{T}$									
0.103327	0.470201	0.408011	0.782758	0.915993	0.27243	0.577354	0.255809	0.760366	0.7
0.060691	0.719512	0.069996	0.375888	0.063048	0.213917	0.500701	0.188528	0.101752	0.0
{0.390668,	komp(1) {0.390668,0.025996,0.292281,0.171547,0.50066,0.73514,0.455511,0.11219,0.039799,0.122397,0.160783,0.▶								
									L
									4/99

1.9


9 von: 12


Herleitung, Programmierung, Diskussion

	Ai	Вх	Cy	D	E	F	G	H	J	^
•	=seq(j,j,1,2	=seq(b[1,j	=seq(b[2,j							
1	1	0.103327	0.060691							
2	2	0.470201	0.719512							
3	3	0.408011	0.069996							ı
4	4	0.782758	0.375888							ı
5	5	0.915993	0.063048							ı
6	6	0.27243	0.213917							ı
7	7	0.577354	0.500701							
8	8	0.255809	0.188528							
9	9	0.760366	0.101752							
10	10	0.766856	0.074707							
11	11	0.727908	0.082943							
12	12	0.188355	0.092879							
13	13	0.779086	0.252739							
14	14	0.503388	0.498253							
15	15	0.69452	0.033235							
16	16	0.686055	0.289077							
17	17	0.755686	0.222774							
A	1 =1								4	>

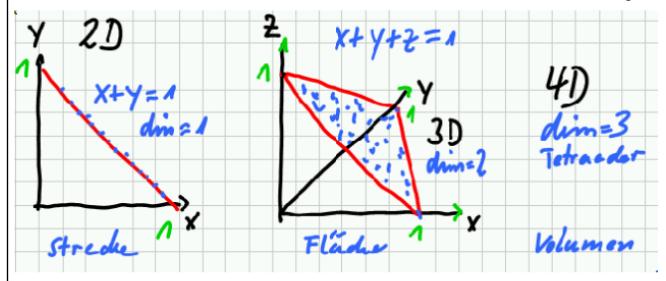
1.10

StochastischeMatrizen-ti.tns 10 von: 12

1.11

StochastischeMatrizen-ti.tns 11 von: 12

Herleitung, Programmierung, Diskussion


Zum Handling:

In Data und Statistics entsteht immer nur das Bild der momentat gültigen Listen aus Speadsheets. So ein Bild ist jeweils mit dem Schnappschuss-Werkzeug (Fotoapparat) herausgegriffen und dann in eine Notes-Seite (Nr. 6) eingefügt und kleiner gezogen.

Nach einer Neubelegungvon $\mathbf{b}:=(\mathbf{stochpts}())^{\mathsf{T}}$ im Calculatorfenster muss man die Zellen der zweiten Zeile in Spreadsheets neu abschicken.

Anmerkung zum Ansatz:

Der Ansatz einer Potenzfunktion für die Dichte- und damit auch für die Verteilung ist vernünftig, da

Das Gebilde, in dem die Punkte gleichverteilt sein müssen, ist mit einem Potenzgesetz verknüpft.