Handwerkerbeispiel und Theorie

Markovkette2x2 Handwerker

Markovkette mit zwei Zuständen Haftendorn 2011

Handwerker–Bespielund vollständige theoretische Behandlung

$$\mathbf{aa} := \begin{bmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{bmatrix} \rightarrow \begin{bmatrix} 0.7 & 0.3 \\ 0.1 & 0.9 \end{bmatrix} \quad \mathbf{aa}^2 \rightarrow \begin{bmatrix} 0.52 & 0.48 \\ 0.16 & 0.84 \end{bmatrix}$$

aa·aa $\begin{bmatrix} 0.52 & 0.48 \\ 0.16 & 0.84 \end{bmatrix}$ Bestimmung der Eigenwerte, obwohles EW 1 immer gibt.

ak:=
$$\begin{bmatrix} 0.3-k & 0.7 \\ 0.8 & 0.2-k \end{bmatrix} \det(\mathbf{ak}) \cdot k^2 - 0.5 \cdot k - 0.5$$

solve $(\det(\mathbf{ak})=0,k) \rightarrow k=0.5 \text{ or } k=1.4$ aa hat tatsächlich den ew k=1

Berechnung eines stochastischen ev zum ew k=1

$$\mathbf{v} := \begin{bmatrix} x & y \end{bmatrix} \cdot \begin{bmatrix} x & y \end{bmatrix}$$

$$\mathbf{v} \cdot \mathbf{aa} \cdot \begin{bmatrix} 0.7 \cdot x + 0.1 \cdot y & 0.3 \cdot x + 0.9 \cdot y \end{bmatrix}$$

gls:=mat
$$\triangleright$$
list($\mathbf{v} \cdot \mathbf{aa} = \mathbf{v}$) \triangleright {0.7· x +0.1· y = x ,0.3· x +0.9· y = y }

solve (augment (gls,
$$\{x+y=1\}$$
), x,y) • $x=0.25$ and $y=0.75$

Probe
$$\begin{bmatrix} 0.25 & 0.75 \end{bmatrix}$$
·aa · $\begin{bmatrix} 0.25 & 0.75 \end{bmatrix}$ Dies ist also der Eigenvektor zu Eigenwert 1

Er ist der stabile Vektor des Markovprozesses
$$aa^{20}$$
 $\rightarrow \begin{bmatrix} 0.250027 & 0.749973 \\ 0.249991 & 0.750009 \end{bmatrix}$

Markovkette mit zwei Zuständen allgemein mit p und q Haftendorn 2011

at:= $\begin{bmatrix} 1-p & p \\ q & 1-q \end{bmatrix}$ Allgemeine Eigenwertbestimmug: determinante(A-k E)

$$\mathbf{al} := \begin{bmatrix} 1 - p - k & p \\ q & 1 - q - k \end{bmatrix} \det(\mathbf{al}) \cdot k^2 + k \cdot (p + q - 2) - p - q + 1 \triangleq$$

solve $(\det(\mathbf{al})=0,k) \rightarrow k=(p+q-1)$ or k=1 at hat immer ew 1.

Berechnung eines stochastischen ev zum ew k=1

Berechnung des Eigenvektors $\mathbf{v} := \begin{bmatrix} x & y \end{bmatrix}$ $\mathbf{v} \cdot \mathbf{at} \cdot \begin{bmatrix} (1-p) \cdot x + q \cdot y & p \cdot x + (1-q) \cdot y \end{bmatrix}$

glsa:=mat
$$\triangleright$$
list($\mathbf{v} \cdot \mathbf{at} = \mathbf{v}$) \triangleright { $(1-p)\cdot x + q \cdot y = x, p \cdot x + (1-q)\cdot y = y$ }

lo:=solve (augment (glsa,
$$\{x+y=1\}$$
), x , y) $\rightarrow x = \frac{q}{p+q}$ and $y = \frac{p}{p+q}$

Also **evt**:= $\frac{q}{p+q} = \frac{p}{p+q}$ Dies ist also der **allgemeine stochastische Eigenvektor**

mit Zeilensumme 1. Er hat die Richtung **eri**:= $\begin{bmatrix} q & p \end{bmatrix}$ Probe dafür **eri·at** • $\begin{bmatrix} q & p \end{bmatrix}$

Probe allgemein $\left[\frac{q}{p+q} \quad \frac{p}{p+q}\right]$ • at • $\left[\frac{q}{p+q} \quad \frac{p}{p+q}\right]$ Eigenvektoren sind immer nur bis auf einen

Faktor bestimmt (eigentlich: Eigenraum), eri ist kein stochastischer Vektor, Faktor (p+q)

Weiter in obigem Beispiel

Dieses theoretische Ergebnis passt zu der obigen speziellen Rechnung

$$\left[\frac{\mathbf{aa}[1,2]}{\mathbf{aa}[1,2] + \mathbf{aa}[2,1]} \quad \frac{\mathbf{aa}[2,1]}{\mathbf{aa}[1,2] + \mathbf{aa}[2,1]} \right] \cdot [0.75 \quad 0.25]$$

heute:=
$$\begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \end{bmatrix}$$
 morgen:=heute·aa $\cdot \begin{bmatrix} 0.7 & 0.3 \end{bmatrix}$

Verschiedene Möglichkeiten ümo:=morgen·aa • $\begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$ heute·aa² • $\begin{bmatrix} 0.52 & 0.48 \end{bmatrix}$

Definiert auf der Tabellenseite $\ddot{\mathbf{u}} + \{0.52, 0.48\} \ddot{\mathbf{u}} + \{0.412, 0.588\} \ddot{\mathbf{u}} + \{0.3472, 0.6528\}$

Als Liste gemacht

all:=seq(mat) list (heute · aak), k,0,6)
$$\begin{bmatrix}
1 & 0 \\
0.7 & 0.3 \\
0.52 & 0.48 \\
0.412 & 0.588 \\
0.3472 & 0.6528 \\
0.30832 & 0.69168 \\
0.284992 & 0.715008
\end{bmatrix}$$

$$\begin{bmatrix} aa^{40} \\ 0.25 \\ 0.25 \end{bmatrix} = \begin{bmatrix} (aa[1,2] + aa[2,1]) \cdot 100 \cdot aa^{40} \\ 10. \\ 30. \end{bmatrix}$$
 Auf lange Sicht sind sie von 40

Tagen 10 tage da und 30 Tage nicht da. Dieses entspricht den theoretisch berechneten Werten.

www.mathematik-verstehen.de

Markovkette mit zwei Zuständen

Prof. Dr. Dörte Haftendorn 2011

Handwerkerbeispiel und Theorie

	A merk	Bheut	Cmor	□ü1	E _{ü2}	E ü3	G _{ü4}	Hü5	J
•		=mat▶list(=mat▶list(=mat▶list(=mat▶list(=mat▶list(=mat▶list(¹mat∳list	
1	da	1	0.7	0.52	0.412	0.3472	0.30832	0.284992	
2	nicht da	0	0.3	0.48	0.588	0.6528	0.69168	0.715008	
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
16			()						▼
H	ü5:=mat▶	list(heute	aa^6						◀ ▶

1.4

markov2mal2.tns

```
all • 1 0

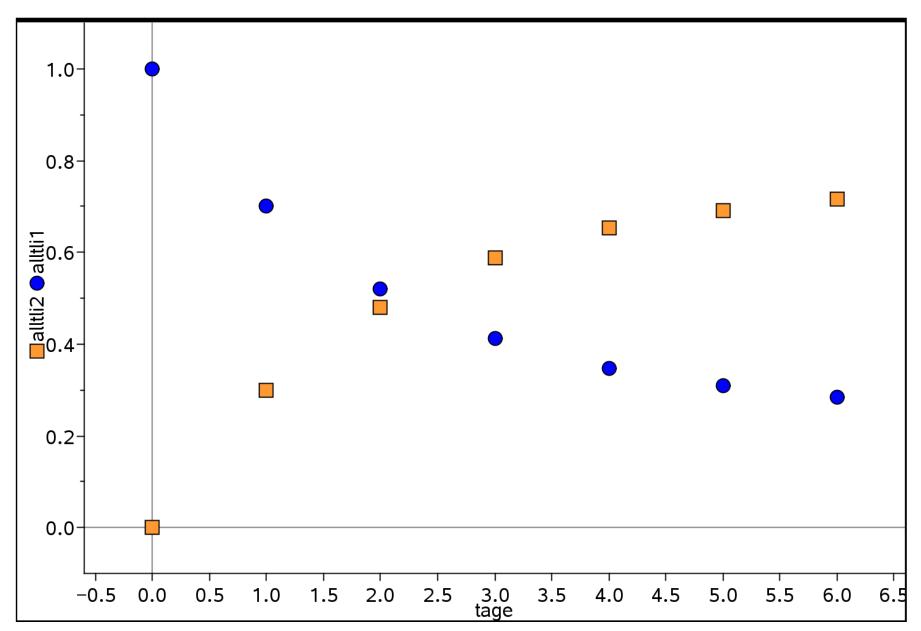
0.7 0.3

0.52 0.48

0.412 0.588

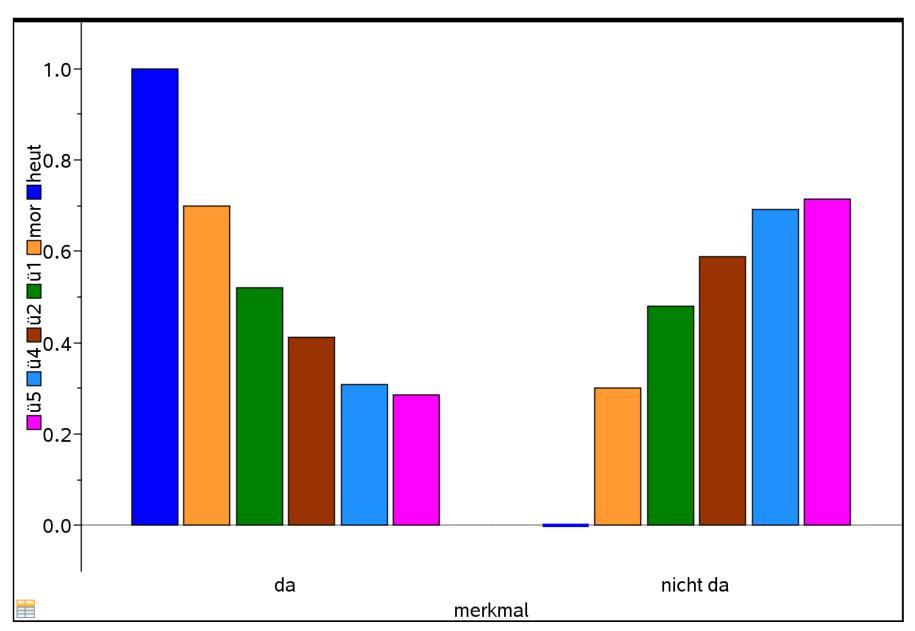
0.3472 0.6528

0.30832 0.69168


0.284992 0.715008
```

Um die Spalten darstellen zu können, muss transponiert werden.

```
allt:=all<sup>T</sup> ► \begin{bmatrix} 1 & 0.7 & 0.52 & 0.412 & 0.3472 & 0.30832 & 0.284992 \\ 0 & 0.3 & 0.48 & 0.588 & 0.6528 & 0.69168 & 0.715008 \end{bmatrix} (T-Zeichen bei Sonderzeichen)
```


Für die "Daten"-Auffassung muss eine Liste aus der Matrix gemacht werden.

```
alltli1:=mat \blacktriangleright list (allt[1]) \blacktriangleright {1,0.7,0.52,0.412,0.3472,0.30832,0.284992 } alltli2:=mat \blacktriangleright list (allt[2]) \blacktriangleright {0,0.3,0.48,0.588,0.6528,0.69168,0.715008 } tage:=seq(i,i,0,6) \blacktriangleright {0,1,2,3,4,5,6}
```


1.6

markov2mal2.tns

1.7

	1	0
	0.7	0.3
	0.52	0.48
	0.412	0.588
	0.3472	0.6528
	0.30832	0.69168
	0.284992	0.715008
	0.270995	0.729005
	0.262597	0.737403
	0.257558	0.742442
	0.254535	0.745465
	0.252721	0.747279
	0.251633	0.748367
	0.25098	0.74902
$(\ldots (k), \ldots)$	0.250588	0.749412
Längere Liste $\operatorname{seq}(\operatorname{mat}) \operatorname{list}(\operatorname{heute} \cdot \operatorname{aa}^k), k, 0, 30)$	0.250353	0.749647
	0.250212	0.749788
	0.250127	0.749873
	0.250076	0.749924
	0.250046	0.749954
	0.250027	0.749973
	0.250016	0.749984
	0.05001	0.74000