Henn-Büchter http://www.elementare-stochastik.de

B. Beweis zweier Reihenformeln

Wir benötigen die beiden folgenden Reihen-Formeln:

a.
$$\sum_{n=1}^{\infty} n \cdot a^n = \frac{a}{\left(1-a\right)^2} \text{ für } |a| < 1$$

b.
$$\sum_{n=1}^{\infty} n^2 \cdot a^n = \frac{a \cdot (1+a)}{(1-a)^3}$$
 für $|a| < 1$

Formel a. wird im Beispiel "Warten auf die erste 6" (S. 238/239) benötigt. Formel b. wird beim nachfolgenden Beweis von Satz 25 (S. 261) benötigt. Die Formel a. beweisen wir zuerst algebraisch, dann zusammen mit Formel b. analytisch.

Algebraischer Beweis von Formel a.

Wir beweisen zunächst die für alle $a \in \mathbb{R} \setminus \{1\}$ gültige Formel

$$\sum_{n=1}^{m} n \cdot a^{n} = \frac{m \cdot a^{m+1} - a \cdot \frac{a^{m} - 1}{a - 1}}{a - 1}$$

Mit $s(m) := \sum_{n=1}^{m} n \cdot a^n$ folgt der Beweis aus der folgenden Umformung:

Henn-Büchter http://www.elementare-stochastik.de Seite 2 des Beweises zweier Reihenformeln

$$s(m) = a + 2a^{2} + 3a^{3} + \dots + ma^{m}$$

$$= a + a^{2} + a^{3} + \dots + a^{m-1} + a^{m} + a^{m} + a^{2} + a^{3} + \dots + a^{m-1} + a^{m} + a^{m} + a^{2} + a^{3} + \dots + a^{m-1} + a^{m} + a^$$

Für |a| < 1 folgt wie behauptet $s(m) \underset{m \to \infty}{\to} \frac{0 - a \cdot \frac{0 - 1}{a - 1}}{a - 1} = \frac{a}{(a - 1)^2}$. Für die beiden Rand-

fälle $a = \pm 1$ ist die Reihe divergent:

$$a=1\colon \ s(m)=\sum_{n=1}^m n=\frac{m\cdot (m+1)}{2}\mathop{\to}_{m\to\infty}^{}\infty\,,$$

a = -1:

$$s(m) = \sum_{n=1}^m n \cdot (-1)^n = -1 + 2 - 3 + 4... = \begin{cases} \frac{m}{2} & \text{für m gerade} \\ -\frac{m+1}{2} - m & \text{für m ungerade} \end{cases} \xrightarrow[m \to \infty]{}^{\infty}.$$