Geometrie Leitseite URL haftendorn.uni-lueneburg.de/mathe-lehramt/geo/geo.htm |
[Geometrie] [Platonische Körper] |
Ein Programm von Albert Kluge, Bremen |
|
Mathematisches Highlight: Kreuzprodukt der eine Fläche aufspannenden Vektoren bilden. Wenn Betrag der z-Koordinate positiv ist, dann Fläche anzeigen. |
Wuerfel2.java
import java.awt.*; import java.applet.*; public class Wuerfel2 extends Applet { // 8 Eckpunkte 1-8 // mit je 3 Koordinaten 1,2,3 double p[][] = new double[9][4]; int x=1, y=2, z=3; public void init() { setBackground(new Color(255,255,255)); // 8 Eckpunkte im lokalen Würfel-Koordinatensystem // Nullpunkt = Mittelpunkt p[1][x] = -100; p[1][y] = -100; p[1][z] = -100; p[2][x] = +100; p[2][y] = -100; p[2][z] = -100; p[3][x] = +100; p[3][y] = -100; p[3][z] = +100; p[4][x] = -100; p[4][y] = -100; p[4][z] = +100; p[5][x] = -100; p[5][y] = +100; p[5][z] = -100; p[6][x] = +100; p[6][y] = +100; p[6][z] = -100; p[7][x] = +100; p[7][y] = +100; p[7][z] = +100; p[8][x] = -100; p[8][y] = +100; p[8][z] = +100; // 8 - - - - - 7 // / | / | // 5 - - - - - 6 | // | | | | // | 4 - - - -|- 3 // | / | / // 1 - - - - - 2 // y-Werte spiegeln for (int i=1;i<9;i++) { p[i][y] = -p[i][y]; } } // Rotationswinkel in rad double angle_x = 0.01; double angle_y = 0.0075; double angle_z = 0.005; Image buffer; Graphics2D gBuffer; double c[] = new double[9]; int w = 200; // -> Weltkoordinaten public void paint(Graphics g) { // Double-Buffering if (buffer==null) { buffer=createImage(this.getSize().width, this.getSize().height); gBuffer=(Graphics2D)buffer.getGraphics(); } gBuffer.clearRect(0,0,this.getSize().width, this.getSize().height); // Antialiasing gBuffer.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); // Perspektive: *1+z/1000 for (int i=1;i<9;i++) { c[i] = 1+p[i][z]/1000; } // Kreuzprodukt der eine Fläche aufspannenden Vektoren bilden // Wenn Betrag der z-Koordinate positiv: Fläche anzeigen if((p[1][x]*c[1]-p[2][x]*c[2])*(p[3][y]*c[3]-p[2][y]*c[2]) -(p[1][y]*c[1]-p[2][y]*c[2])*(p[3][x]*c[3]-p[2][x]*c[2]) > 0) { // |2->1 x 2->3| > 0 int xCoords1234[] = {(int)(p[1][x]*c[1])+w,(int)(p[2][x]*c[2])+w, (int)(p[3][x]*c[3])+w,(int)(p[4][x]*c[4])+w}; int yCoords1234[] = {(int)(p[1][y]*c[1])+w,(int)(p[2][y]*c[2])+w, (int)(p[3][y]*c[3])+w,(int)(p[4][y]*c[4])+w}; gBuffer.setColor(new Color(255,0,0)); gBuffer.fillPolygon(new Polygon(xCoords1234,yCoords1234,4)); } else if((p[7][x]*c[7]-p[6][x]*c[6])*(p[5][y]*c[5]-p[6][y]*c[6]) -(p[7][y]*c[7]-p[6][y]*c[6])*(p[5][x]*c[5]-p[6][x]*c[6]) > 0) { // |6->7 x 6->5| > 0 int xCoords5678[] = {(int)(p[5][x]*c[5])+w,(int)(p[6][x]*c[6])+w, (int)(p[7][x]*c[7])+w,(int)(p[8][x]*c[8])+w}; int yCoords5678[] = {(int)(p[5][y]*c[5])+w,(int)(p[6][y]*c[6])+w, (int)(p[7][y]*c[7])+w,(int)(p[8][y]*c[8])+w}; gBuffer.setColor(new Color(255,0,0)); gBuffer.fillPolygon(new Polygon(xCoords5678,yCoords5678,4)); } if((p[6][x]*c[6]-p[2][x]*c[2])*(p[1][y]*c[1]-p[2][y]*c[2]) -(p[6][y]*c[6]-p[2][y]*c[2])*(p[1][x]*c[1]-p[2][x]*c[2]) > 0) { // |2->6 x 2->1| > 0 int xCoords1265[] = {(int)(p[1][x]*c[1])+w,(int)(p[2][x]*c[2])+w, (int)(p[6][x]*c[6])+w,(int)(p[5][x]*c[5])+w}; int yCoords1265[] = {(int)(p[1][y]*c[1])+w,(int)(p[2][y]*c[2])+w, (int)(p[6][y]*c[6])+w,(int)(p[5][y]*c[5])+w}; gBuffer.setColor(new Color(0,255,0)); gBuffer.fillPolygon(new Polygon(xCoords1265,yCoords1265,4)); } else if((p[4][x]*c[4]-p[3][x]*c[3])*(p[7][y]*c[7]-p[3][y]*c[3]) -(p[4][y]*c[4]-p[3][y]*c[3])*(p[7][x]*c[7]-p[3][x]*c[3]) > 0) { // |3->4 x 3->7| > 0 int xCoords4378[] = {(int)(p[4][x]*c[4])+w,(int)(p[3][x]*c[3])+w, (int)(p[7][x]*c[7])+w,(int)(p[8][x]*c[8])+w}; int yCoords4378[] = {(int)(p[4][y]*c[4])+w,(int)(p[3][y]*c[3])+w, (int)(p[7][y]*c[7])+w,(int)(p[8][y]*c[8])+w}; gBuffer.setColor(new Color(0,255,0)); gBuffer.fillPolygon(new Polygon(xCoords4378,yCoords4378,4)); } if((p[3][x]*c[3]-p[2][x]*c[2])*(p[6][y]*c[6]-p[2][y]*c[2])-(p[3][y]*c[3] -p[2][y]*c[2])*(p[6][x]*c[6]-p[2][x]*c[2]) > 0) { // |2->3 x 2->6| > 0 int xCoords2376[] = {(int)(p[2][x]*c[2])+w,(int)(p[3][x]*c[3])+w, (int)(p[7][x]*c[7])+w,(int)(p[6][x]*c[6])+w}; int yCoords2376[] = {(int)(p[2][y]*c[2])+w,(int)(p[3][y]*c[3])+w, (int)(p[7][y]*c[7])+w,(int)(p[6][y]*c[6])+w}; gBuffer.setColor(new Color(0,0,255)); gBuffer.fillPolygon(new Polygon(xCoords2376,yCoords2376,4)); } else if((p[5][x]*c[5]-p[1][x]*c[1])*(p[4][y]*c[4]-p[1][y]*c[1]) -(p[5][y]*c[5]-p[1][y]*c[1])*(p[4][x]*c[4]-p[1][x]*c[1]) > 0) { // |1->5 x 1->4| > 0 int xCoords1485[] = {(int)(p[1][x]*c[1])+w,(int)(p[4][x]*c[4])+w, (int)(p[8][x]*c[8])+w,(int)(p[5][x]*c[5])+w}; int yCoords1485[] = {(int)(p[1][y]*c[1])+w,(int)(p[4][y]*c[4])+w, (int)(p[8][y]*c[8])+w,(int)(p[5][y]*c[5])+w}; gBuffer.setColor(new Color(0,0,255)); gBuffer.fillPolygon(new Polygon(xCoords1485,yCoords1485,4)); } g.drawImage (buffer, 0, 0, this); // Verzögerung try {Thread.sleep(20);} catch (InterruptedException e) {} double px, py, pz; for (int i=1;i<9;i++) { px = p[i][x]; py = p[i][y]; pz = p[i][z]; // Rotation um x-Achse p[i][y] = py*Math.cos(angle_x)-pz*Math.sin(angle_x); p[i][z] = py*Math.sin(angle_x)+pz*Math.cos(angle_x); py = p[i][y]; pz = p[i][z]; // Rotation um y-Achse p[i][x] = px*Math.cos(angle_y)+pz*Math.sin(angle_y); p[i][z] =-px*Math.sin(angle_y)+pz*Math.cos(angle_y); px = p[i][x]; // Rotation um z-Achse p[i][x] = px*Math.cos(angle_z)-py*Math.sin(angle_z); p[i][y] = py*Math.cos(angle_z)+px*Math.sin(angle_z); } repaint(); } public void update(Graphics g) {paint(g);} }
Schema der Berechnung des Kreuzprodukts der Fläche. Dabei sind p und q die eine Fläche aufspannenden Vektoren.
[ p1 ] [ q1 ] [ p2*q3 - p3*q2 ] [ p2 ] x [ q2 ] = [ p3*q1 - p1*q3 ] [ p3 ] [ q3 ] [ p1*q2 - p2*q1 ]Download ©Albert Kluge www.jjam.de
[Computer] [DGS] [Geometrie] [Platonische Körper] |
Inhalt und Webbetreuung ©Prof. Dr. Dörte Haftendorn Frühjahr 1998 update |
Direkte Internetadressen [www.doerte-haftendorn.de] [haftendorn.uni-lueneburg.de/mathe-lehramt] |