www.mathematik-verstehen.de |
Link zum Buch Site-Info |
|
URL http://haftendorn.uni-lueneburg.de/mathe-lehramt/numerik/maschgen.htm [Analysis] [Computer] | ||
Maschinengenauigkeit von Excel | download *.xls | |||||||
Prof. Dr. Dörte Haftendorn | Okt 02 | Mit 25 Stellen ausgeschrieben | ||||||
Die Maschinengenauigkeit ist die kleinste Zahl, deren Addition zu 1 von der Maschine noch gemerkt wird. | ||||||||
i | 1+10^ (-i) | das -1 | j | 1+2^ (-j) | das -1 | 1+2^ (-j) | das -1 | j |
1 | 1,1 | 0,1 | 1 | 1,5 | 0,5 | 1,5000000000000000000000000 | 0,5000000000000000000000000 | 1 |
2 | 1,01 | 0,01 | 2 | 1,25 | 0,25 | 1,2500000000000000000000000 | 0,2500000000000000000000000 | 2 |
3 | 1,001 | 0,001 | 3 | 1,125 | 0,125 | 1,1250000000000000000000000 | 0,1250000000000000000000000 | 3 |
4 | 1,0001 | 1E-04 | 4 | 1,0625 | 0,0625 | 1,0625000000000000000000000 | 0,0625000000000000000000000 | 4 |
5 | 1,00001 | 1E-05 | 5 | 1,03125 | 0,03125 | 1,0312500000000000000000000 | 0,0312500000000000000000000 | 5 |
6 | 1,000001 | 1E-06 | 6 | 1,015625 | 0,015625 | 1,0156250000000000000000000 | 0,0156250000000000000000000 | 6 |
7 | 1,0000001 | 1E-07 | 7 | 1,0078125 | 0,0078125 | 1,0078125000000000000000000 | 0,0078125000000000000000000 | 7 |
8 | 1,00000001 | 1E-08 | 8 | 1,00390625 | 0,00390625 | 1,0039062500000000000000000 | 0,0039062500000000000000000 | 8 |
9 | 1,000000001 | 1E-09 | 9 | 1,00195313 | 0,001953125 | 1,0019531250000000000000000 | 0,0019531250000000000000000 | 9 |
10 | 1 | 1E-10 | 10 | 1,00097656 | 0,000976563 | 1,0009765625000000000000000 | 0,0009765625000000000000000 | 10 |
11 | 1 | 1E-11 | 11 | 1,00048828 | 0,000488281 | 1,0004882812500000000000000 | 0,0004882812500000000000000 | 11 |
12 | 1 | 1,0001E-12 | 12 | 1,00024414 | 0,000244141 | 1,0002441406250000000000000 | 0,0002441406250000000000000 | 12 |
13 | 1 | 9,992E-14 | 13 | 1,00012207 | 0,00012207 | 1,0001220703125000000000000 | 0,0001220703125000000000000 | 13 |
14 | 1 | 9,992E-15 | 14 | 1,00006104 | 6,10352E-05 | 1,0000610351562500000000000 | 0,0000610351562500000000000 | 14 |
15 | 1 | 0 | 15 | 1,00003052 | 3,05176E-05 | 1,0000305175781200000000000 | 0,0000305175781250000000000 | 15 |
16 | 1,00001526 | 1,52588E-05 | 1,0000152587890600000000000 | 0,0000152587890625000000000 | 16 | |||
17 | 1,00000763 | 7,62939E-06 | 1,0000076293945300000000000 | 0,0000076293945312500000000 | 17 | |||
18 | 1,00000381 | 3,8147E-06 | 1,0000038146972600000000000 | 0,0000038146972656250000000 | 18 | |||
19 | 1,00000191 | 1,90735E-06 | 1,0000019073486300000000000 | 0,0000019073486328125000000 | 19 | |||
20 | 1,00000095 | 9,53674E-07 | 1,0000009536743100000000000 | 0,0000009536743164062500000 | 20 | |||
21 | 1,00000048 | 4,76837E-07 | 1,0000004768371500000000000 | 0,0000004768371582031250000 | 21 | |||
22 | 1,00000024 | 2,38419E-07 | 1,0000002384185700000000000 | 0,0000002384185791015620000 | 22 | |||
23 | 1,00000012 | 1,19209E-07 | 1,0000001192092800000000000 | 0,0000001192092895507810000 | 23 | |||
24 | 1,00000006 | 5,96046E-08 | 1,0000000596046400000000000 | 0,0000000596046447753906000 | 24 | |||
25 | 1,00000003 | 2,98023E-08 | 1,0000000298023200000000000 | 0,0000000298023223876953000 | 25 | |||
26 | 1,00000001 | 1,49012E-08 | 1,0000000149011600000000000 | 0,0000000149011611938477000 | 26 | |||
27 | 1,00000001 | 7,45058E-09 | 1,0000000074505800000000000 | 0,0000000074505805969238300 | 27 | |||
28 | 1 | 3,72529E-09 | 1,0000000037252900000000000 | 0,0000000037252902984619100 | 28 | |||
29 | 1 | 1,86265E-09 | 1,0000000018626400000000000 | 0,0000000018626451492309600 | 29 | |||
30 | 1 | 9,31323E-10 | 1,0000000009313200000000000 | 0,0000000009313225746154790 | 30 | |||
31 | 1 | 4,65661E-10 | 1,0000000004656600000000000 | 0,0000000004656612873077390 | 31 | |||
32 | 1 | 2,32831E-10 | 1,0000000002328300000000000 | 0,0000000002328306436538700 | 32 | |||
33 | 1 | 1,16415E-10 | 1,0000000001164200000000000 | 0,0000000001164153218269350 | 33 | |||
34 | 1 | 5,82077E-11 | 1,0000000000582100000000000 | 0,0000000000582076609134674 | 34 | |||
35 | 1 | 2,91038E-11 | 1,0000000000291000000000000 | 0,0000000000291038304567337 | 35 | |||
Also ist die Maschinengenauigkeit von Excel | 36 | 1 | 1,45519E-11 | 1,0000000000145500000000000 | 0,0000000000145519152283669 | 36 | ||
37 | 1 | 7,27596E-12 | 1,0000000000072800000000000 | 0,0000000000072759576141834 | 37 | |||
38 | 1 | 3,63798E-12 | 1,0000000000036400000000000 | 0,0000000000036379788070917 | 38 | |||
39 | 1 | 1,81899E-12 | 1,0000000000018200000000000 | 0,0000000000018189894035459 | 39 | |||
40 | 1 | 9,09495E-13 | 1,0000000000009100000000000 | 0,0000000000009094947017729 | 40 | |||
2^(-49) | 41 | 1 | 4,54747E-13 | 1,0000000000004500000000000 | 0,0000000000004547473508865 | 41 | ||
42 | 1 | 2,27374E-13 | 1,0000000000002300000000000 | 0,0000000000002273736754432 | 42 | |||
43 | 1 | 1,13687E-13 | 1,0000000000001100000000000 | 0,0000000000001136868377216 | 43 | |||
=1,77636*10^(-15) | 44 | 1 | 5,68434E-14 | 1,0000000000000600000000000 | 0,0000000000000568434188608 | 44 | ||
45 | 1 | 2,84217E-14 | 1,0000000000000300000000000 | 0,0000000000000284217094304 | 45 | |||
46 | 1 | 1,42109E-14 | 1,0000000000000100000000000 | 0,0000000000000142108547152 | 46 | |||
47 | 1 | 7,10543E-15 | 1,0000000000000100000000000 | 0,0000000000000071054273576 | 47 | |||
Mantissenlänge: dual 49+3 Stellen , also insgesamt 52 Bit | 48 | 1 | 3,55271E-15 | 1,0000000000000000000000000 | 0,0000000000000035527136788 | 48 | ||
49 | 1 | 1,77636E-15 | 1,0000000000000000000000000 | 0,0000000000000017763568394 | 49 | |||
50 | 1 | 0 | 1,0000000000000000000000000 | 0,0000000000000000000000000 | 50 | |||
51 | 1 | 0 | 1,0000000000000000000000000 | 0,0000000000000000000000000 | 51 | |||
52 | 1 | 0 | 1,0000000000000000000000000 | 0,0000000000000000000000000 | 52 | |||
53 | 1 | 0 | 1,0000000000000000000000000 | 0,0000000000000000000000000 | 53 | |||
siehe auch Bereich-Seite | 54 | 1 | 0 | 1,0000000000000000000000000 | 0,0000000000000000000000000 | 54 |
Internetadressen dieses Web-Verbundes [www.doerte-haftendorn.de] [haftendorn.uni-lueneburg.de/mathe-lehramt]
[haftendorn.uni-lueneburg.de/ing-math]
[LBS-Mathe] [Numerik]
Inhalt und Webbetreuung Prof. Dr. Dörte Haftendorn April 2002, update